vocabulaire |
1 |
1 |
CONTENTS |
|
RACCOURCIS |
2 |
2 |
INTRODUCTION....................... ix |
|
geometrie |
3 |
3 |
STANDARD FORMS ..................... xv |
|
géometrie |
4 |
4 |
FOURIER TRANSFORMS 1 |
|
maths-sixieme |
5 |
5 |
CHAPTER I |
|
equations |
6 |
6 |
FOURIER COSINE TRANSFORMS |
|
INTEGRALES |
7 |
7 |
1.1. General
formulas.................. ^ |
7 |
maths |
8 |
8 |
1.2. Algebraic
functions................. 7 |
7 |
mathematiques |
9 |
9 |
1.3. Powers with
arbitrary index.............. |
10 |
maths/index |
10 |
10 |
1.4. Exponential
functions................ ^ |
14 |
maths/001 |
11 |
11 |
1.5. Logarithmic
functions................ 17 |
17 |
index-maths-a. |
12 |
12 |
1.6. Trigonometric
functions of argument kx......... lg |
18 |
index-maths |
13 |
13 |
1.7. Trigonometric
functions of other arguments....... 23 |
23 |
grammaire |
14 |
14 |
1.8. Inverse
trigonometric functions............ 29 |
29 |
langues |
15 |
15 |
1.9. Hyperbolic
functions................. 30 |
30 |
dictionnaire |
16 |
16 |
1.10. Orthogonal
polynomials............... 3g |
38 |
conjugaison |
17 |
17 |
1.11. Gamma function
(including incomplete gamma |
|
photos |
18 |
18 |
function) and related
functions; Legendre function ....
39 |
39 |
VIDEOS |
19 |
19 |
1.12. Bessel
functions of argument kx........... 43 |
43 |
sciences |
20 |
20 |
1.13. Bessel
functions of other arguments.......... 51 |
51 |
TECHNIQUES |
21 |
21 |
1.14. Other higher
transcendental functions......... 60 |
60 |
electromagnetisme |
22 |
22 |
CHAPTER II |
|
physique |
23 |
23 |
FOURIER SINE TRANSFORMS |
|
thermodynamique |
24 |
24 |
2.1. General
formulas.................. 63 |
63 |
electrotechnique |
25 |
25 |
2.2. Algebraic
functions................. 54 |
64 |
Wantzel |
26 |
26 |
2.3. Powers with
arbitrary index............. 53 |
68 |
Extraction_de_racines_carrées |
27 |
27 |
2.4. Exponential
functions................ 72 |
72 |
Cafe-10-12-10.pdf |
28 |
28 |
2.5. Logarithmic
functions................ 76 |
76 |
WANTZEL |
29 |
29 |
2.6. Trigonometric
functions of argument kx........ 78 |
78 |
quantum-theory-wanclik |
30 |
30 |
2.7. Trigonometric
functions of other arguments...... 82 |
82 |
equation-du-second-degre |
31 |
31 |
2.8. Inverse
trigonometric functions........... 87 |
87 |
Équation_cubique |
32 |
32 |
2.9. Hyperbolic
functions............... 88 |
88 |
troisieme-degre |
33 |
33 |
2.10. Orthogonal
polynomials.............. 94 |
94 |
Cubic_equation |
34 |
34 |
2.LI. Gamma functions (including incomplete gamma function) |
96 |
Équation_du_troisième_degré |
35 |
35 |
and related functions; Legendre function....... 96 |
|
equation-troisieme-degre |
36 |
36 |
2.12. Bessel
functions of argument kx........... 99 |
99 |
equation_troisieme_degre.pdf |
37 |
37 |
2.13. Bessel
functions of other arguments......... 108 |
108 |
Eqa3dex. |
38 |
38 |
2.14. Other higher
transcendental functions........ 115 |
115 |
reimann-une-enigme- |
39 |
39 |
CHAPTER III |
|
sanscrit |
40 |
40 |
EXPONENTIAL FOURIER TRANSFORMS |
|
equa31 |
41 |
41 |
3.1. General
formulas................. 117 |
117 |
pdf |
42 |
42 |
3.2. Elementary
functions................ 118 |
118 |
FOURIER-transfoRms |
43 |
43 |
3.3. Higher
transcendental functions........... 122 |
122 |
|
44 |
44 |
LAPLACE TRANSFORMS
125 |
125 |
|
45 |
45 |
CHAPTER IV |
|
|
46 |
46 |
LAPLACE TRANSFORMS |
|
|
47 |
47 |
4.1. General
formulas................. 129 |
129 |
|
48 |
48 |
4.2. Algebraic
functions................ 133 |
133 |
|
49 |
49 |
4.3. Powers with an
arbitrary index........... 137 |
137 |
|
50 |
50 |
4.4. Step-, jump-,
and other sectionally rational functions .
141 |
141 |
|
51 |
51 |
4.5. Exponential
functions............... 143 |
143 |
|
52 |
52 |
4.6. Logarithmic
functions............... 148 |
148 |
|
53 |
53 |
4.7. Trigonometric
functions.............. 150 |
150 |
|
54 |
54 |
4.8. Inverse
trigonometric functions........... 160 |
160 |
|
55 |
55 |
4.9. Hyperbolic
functions................ 162 |
162 |
|
56 |
56 |
4.10. Inverse
hyperbolic functions............ 167 |
167 |
|
57 |
57 |
4.11. Orthogonal
polynomials............... 170 |
170 |
|
58 |
58 |
4.12. Gamma function,
error function, exponential integral and |
|
|
59 |
59 |
related functions................. 176 |
176 |
|
60 |
60 |
4.13. Legendre
functions................ 179 |
179 |
|
61 |
61 |
4.14. Bessel
functions of arguments kt and kt'^....... 182 |
182 |
|
62 |
62 |
4.15. Bessel
functions of other arguments......... 190 |
190 |
|
63 |
63 |
4.16. Modified Bessel
functions of arguments kt |
|
|
64 |
64 |
and kt*..................... 195 |
195 |
|
65 |
65 |
4.17. Modified Bessel
functions of other arguments ....
199 |
199 |
|
66 |
66 |
4.18. Kelvin’s
functions and related functions....... 203 |
203 |
|
67 |
67 |
4.19. Functions
related to Bessel functions, Struve, Lommel |
|
|
68 |
68 |
and Bessel integral functions........... 205 |
205 |
|
69 |
69 |
4.20. Parabolic
cylinder functions............ 210 |
210 |
|
70 |
70 |
4.21. Gauss’
hypergeometric functions.......... 212 |
212 |
|
71 |
71 |
4.22. Confluent
hypergeometric functions......... 214 |
214 |
|
72 |
72 |
4.23. Generalized
hypcrgeometric series......... 217 |
217 |
|
73 |
73 |
4.24. Hypergeomctric
functions of several variables
.... 222 |
222 |
|
74 |
74 |
4.25. Elliptic
functions................. 224 |
224 |
|
75 |
75 |
4.26. Miscellaneous
functions.............. 225 |
225 |
|
76 |
76 |
CHAPTER V |
|
|
77 |
77 |
INVERSE LAPLACE TRANSFORMS |
|
|
78 |
78 |
5.1. General
formulas................. 227 |
227 |
|
79 |
79 |
5.2. Rational
functions................ 229 |
229 |
|
80 |
80 |
5.3. Irrational
algebraic functions........... 233 |
233 |
|
81 |
81 |
5.4. Powers with an
arbitrary index........... 238 |
238 |
|
82 |
82 |
5.5. Exponential
functions of arguments p and 1/p ....
241 |
241 |
|
83 |
83 |
5.6. Exponential
functions of other arguments...... 245 |
245 |
|
84 |
84 |
5.7. Logarithmic
functions............... 250 |
250 |
|
85 |
85 |
5.8. Trigonometric
functions.............. 253 |
253 |
|
86 |
86 |
5.9. Hyperbolic
functions............... 255 |
255 |
|
87 |
87 |
5.10. Orthogonal
polynomials.............. 259 |
259 |
|
88 |
88 |
5.11. Gamma function,
incomplete gumma functions, zeta |
|
|
89 |
89 |
function and related functions........... 261 |
261 |
|
90 |
90 |
5.12. Error function,
exponential integral and related |
|
|
91 |
91 |
functions.................... 265 |
265 |
|
92 |
92 |
5.13. Legendre
functions................ 270 |
270 |
|
93 |
93 |
5.14. Bessel
functions................. 272 |
272 |
|
94 |
94 |
5.15. Modified Bessel
functions of arguments kp and kp2 .
. 276 |
276 |
|
95 |
95 |
5.16. Modified Bessel
functions of other arguments ....
279 |
279 |
|
96 |
96 |
5.17. Functions
related to Bessel functions........ 286 |
286 |
|
97 |
97 |
5. L8. Parabolic
cylinder functions............ 289 |
289 |
|
98 |
98 |
5.19.
Gauss’hypcrgeometric function.......... 291 |
291 |
|
99 |
99 |
5.20. Confluent
hypergeomctric functions......... 293 |
293 |
|
100 |
100 |
5.21. Generalized
hypcrgeometric functions........ 297 |
297 |
|
101 |
101 |
5.22. Elliptic
functions and theta functions........ 299 |
299 |
|
102 |
102 |
MELLIN TRANSFORMS 303 |
303 |
|
103 |
103 |
CHAPTER VI |
|
|
104 |
104 |
MELLIN TRANSFORMS |
|
|
105 |
105 |
6.1. General
formulas.................. 307 |
307 |
|
106 |
106 |
6.2. Algebraic
functions and powers with arbitrary
index . . 308 |
308 |
|
107 |
107 |
6.3. Exponential
functions................ 312 |
312 |
|
108 |
108 |
6.4. Logarithmic
functions................ 314 |
314 |
|
109 |
109 |
6.5. Trigonometric
and inverse trigonometric functions .
. . 317 |
317 |
|
110 |
110 |
6.6. Hyperbolic and
inverse hyperbolic functions...... 322 |
322 |
|
111 |
111 |
6.7. Orthogonal
polynomials, gamma functions, Legendre |
|
|
112 |
112 |
functions and related functions............ 324 |
324 |
|
113 |
113 |
6.8. Bessel functions
and related functions........ 326 |
326 |
|
114 |
114 |
6.9. Other higher
transcendental functions......... 336 |
336 |
|
115 |
115 |
CHAPTER VII |
|
|
116 |
116 |
INVERSE MELLIN TRANSFORMS |
|
|
117 |
117 |
7.1. Algebraic
functions and powers with arbitrary
index. . . 341 |
341 |
|
118 |
118 |
7.2. Other elementary
functions.............. 344 |
344 |
|
119 |
119 |
7.3. Gamma function
and related functions; Kicmann’s zeta |
|
|
120 |
120 |
function...................... 347 |
347 |
|
121 |
121 |
7.4. Bessel
functions.................. 356 |
356 |
|
122 |
122 |
7.5. Other higher
transcendental functions......... 362 |
362 |
|
123 |
123 |
APPENDIX |
|
|
124 |
124 |
Notations and definitions of higher transcendental |
|
|
125 |
125 |
functions..................... 367 |
367 |
|
126 |
126 |
INDEX OF NOTATIONS................... 389 |
389 |
|
127 |
|
|
|
|
128 |
|
|
|
|
129 |
|
|
|
|
130 |
|
|
|
|
131 |
|
|
|
|
132 |
|
|
|
|
133 |
|
|
|
|
134 |
|
|
|
|
135 |
|
|
|
|
136 |
|
|
|
|
137 |
|
|
|
|
138 |
|
|
|
|
139 |
|
|
|
|
140 |
|
|
|
|
141 |
|
|
|
|
142 |
|
|
|
|
143 |
|
|
|
|
144 |
|
|
|
|
145 |
|
|
|
|
146 |
|
|
|
|
147 |
|
|
|
|
148 |
|
|
|
|
149 |
|
|
|
|
150 |
|
|
|
|
151 |
|
|
|
|
152 |
|
|
|
|
153 |
|
|
|
|
154 |
|
|
|
|
155 |
|
|
|
|
156 |
|
|
|
|
157 |
|
|
|
|
158 |
|
|
|
|
159 |
|
|
|
|
160 |
|
|
|
|
161 |
|
|
|
|
162 |
|
|
|
|
163 |
|
|
|
|
164 |
|
|
|
|
165 |
|
|
|
|
166 |
|
|
|
|
167 |
|
|
|
|
168 |
|
|
|
|
169 |
|
|
|
|
170 |
|
|
|
|
171 |
|
|
|
|
172 |
|
|
|
|
173 |
|
|
|
|
174 |
|
|
|
|
175 |
|
|
|
|
176 |
|
|
|
|
177 |
|
|
|
|
178 |
|
|
|
|
179 |
|
|
|
|
180 |
|
|
|
|
181 |
|
|
|
|
182 |
|
|
|
|
183 |
|
|
|
|
184 |
|
|
|
|
185 |
|
|
|
|
186 |
|
|
|
|
187 |
|
|
|
|
188 |
|
|
|
|
189 |
|
|
|
|
190 |
|
|
|
|
191 |
|
|
|
|
192 |
|
|
|
|
193 |
|
|
|
|
194 |
|
|
|
|
195 |
|
|
|
|
196 |
|
|
|
|
197 |
|
|
|
|
198 |
|
|
|
|
199 |
|
|
|
|
200 |
|
|
|
|
201 |
|
|
|
|
202 |
|
|
|
|
203 |
|
|
|
|
204 |
|
|
|
|
205 |
|
|
|
|
206 |
|
|
|
|
207 |
|
|
|
|
208 |
|
|
|
|
209 |
|
|
|
|
210 |
|
|
|
|
211 |
|
|
|
|
212 |
|
|
|
|
213 |
|
|
|
|
214 |
|
|
|
|
215 |
|
|
|
|
216 |
|
|
|
|
217 |
|
|
|
|
218 |
|
|
|
|
219 |
|
|
|
|
220 |
|
|
|
|
221 |
|
|
|
|
222 |
|
|
|
|
223 |
|
|
|
|
224 |
|
|
|
|
225 |
|
|
|
|
226 |
|
|
|
|
227 |
|
|
|
|
228 |
|
|
|
|
229 |
|
|
|
|
230 |
|
|
|
|
231 |
|
|
|
|
232 |
|
|
|
|
233 |
|
|
|
|
234 |
|
|
|
|
235 |
|
|
|
|
236 |
|
|
|
|
237 |
|
|
|
|
238 |
|
|
|
|
239 |
|
|
|
|
240 |
|
|
|
|
241 |
|
|
|
|
242 |
|
|
|
|
243 |
|
|
|
|
244 |
|
|
|
|
245 |
|
|
|
|
246 |
|
|
|
|
247 |
|
|
|
|
248 |
|
|
|
|
249 |
|
|
|
|
250 |
|
|
|
|
251 |
|
|
|
|
252 |
|
|
|
|
253 |
|
|
|
|
254 |
|
|
|
|
255 |
|
|
|
|
256 |
|
|
|
|
257 |
|
|
|
|
258 |
|
|
|
|
259 |
|
|
|
|
260 |
|
|
|
|
261 |
|
|
|
|
262 |
|
|
|
|
263 |
|
|
|
|
264 |
|
|
|
|
265 |
|
|
|
|
266 |
|
|
|
|
267 |
|
|
|
|
268 |
|
|
|
|
269 |
|
|
|
|
270 |
|
|
|
|
271 |
|
|
|
|
272 |
|
|
|
|
273 |
|
|
|
|
274 |
|
|
|
|
275 |
|
|
|
|
276 |
|
|
|
|
277 |
|
|
|
|
278 |
|
|
|
|
279 |
|
|
|
|
280 |
|
|
|
|
281 |
|
|
|
|
282 |
|
|
|
|
283 |
|
|
|
|
284 |
|
|
|
|
285 |
|
|
|
|
286 |
|
|
|
|
287 |
|
|
|
|
288 |
|
|
|
|
289 |
|
|
|
|
290 |
|
|
|
|
291 |
|
|
|
|
292 |
|
|
|
|
293 |
|
|
|
|
294 |
|
|
|
|
295 |
|
|
|
|
296 |
|
|
|
|
297 |
|
|
|
|
298 |
|
|
|
|
299 |
|
|
|
|
300 |
|
|
|
|
301 |
|
|
|
|
302 |
|
|
|
|
303 |
|
|
|
|
304 |
|
|
|
|
305 |
|
|
|
|
306 |
|
|
|
|
307 |
|
|
|
|
308 |
|
|
|
|
309 |
|
|
|
|
310 |
|
|
|
|
311 |
|
|
|
|
312 |
|
|
|
|
313 |
|
|
|
|
314 |
|
|
|
|
315 |
|
|
|
|
316 |
|
|
|
|
317 |
|
|
|
|
318 |
|
|
|
|
319 |
|
|
|
|
320 |
|
|
|
|
321 |
|
|
|
|
322 |
|
|
|
|
323 |
|
|
|
|
324 |
|
|
|
|
325 |
|
|
|
|
326 |
|
|
|
|
327 |
|
|
|
|
328 |
|
|
|
|
329 |
|
|
|
|
330 |
|
|
|
|
331 |
|
|
|
|
332 |
|
|
|
|
333 |
|
|
|
|
334 |
|
|
|
|
335 |
|
|
|
|
336 |
|
|
|
|
337 |
|
|
|
|
338 |
|
|
|
|
339 |
|
|
|
|
340 |
|
|
|
|
341 |
|
|
|
|
342 |
|
|
|
|
343 |
|
|
|
|
344 |
|
|
|
|
345 |
|
|
|
|
346 |
|
|
|
|
347 |
|
|
|
|
348 |
|
|
|
|
349 |
|
|
|
|
350 |
|
|
|
|
351 |
|
|
|
|
352 |
|
|
|
|
353 |
|
|
|
|
354 |
|
|
|
|
355 |
|
|
|
|
356 |
|
|
|
|
357 |
|
|
|
|
358 |
|
|
|
|
359 |
|
|
|
|
360 |
|
|
|
|
361 |
|
|
|
|
362 |
|
|
|
|
363 |
|
|
|
|
364 |
|
|
|
|
365 |
|
|
|
|
366 |
|
|
|
|
367 |
|
|
|
|
368 |
|
|
|
|
369 |
|
|
|
|
370 |
|
|
|
|
371 |
|
|
|
|
372 |
|
|
|
|
373 |
|
|
|
|
374 |
|
|
|
|
375 |
|
|
|
|
376 |
|
|
|
|
377 |
|
|
|
|
378 |
|
|
|
|
379 |
|
|
|
|
380 |
|
|
|
|
381 |
|
|
|
|
382 |
|
|
|
|
383 |
|
|
|
|
384 |
|
|
|
|
385 |
|
|
|
|
386 |
|
|
|
|
387 |
|
|
|
|
388 |
|
|
|
|
389 |
|
|
|
|
390 |
|
|
|
|
391 |
|
|
|
|
392 |
|
|
|
|
393 |
|
|
|
|
394 |
|
|
|
|
395 |
|
|
|
|
396 |
|
|
|
|
397 |
|
|
|
|
398 |
|
|
|
|
399 |
|
|
|
|
400 |
|
|
|
|
401 |
|
|
|
|
402 |
|
|
|
|
|
|
|
|