vocabulaire 1 1 CONTENTS  
RACCOURCIS 2 2 INTRODUCTION....................... ix  
geometrie 3 3 STANDARD FORMS ..................... xv  
 géometrie 4 4 FOURIER TRANSFORMS    1  
maths-sixieme 5 5 CHAPTER I  
equations 6 6 FOURIER COSINE TRANSFORMS  
INTEGRALES 7 7 1.1.    General formulas.................. ^ 7
maths 8 8 1.2.    Algebraic functions................. 7 7
mathematiques 9 9 1.3.    Powers with arbitrary index.............. 10
maths/index 10 10 1.4.    Exponential functions................ ^ 14
maths/001 11 11 1.5.    Logarithmic functions................ 17 17
index-maths-a. 12 12 1.6.    Trigonometric functions of argument kx......... lg 18
index-maths 13 13 1.7.    Trigonometric functions of other arguments....... 23 23
grammaire 14 14 1.8.    Inverse trigonometric functions............ 29 29
langues 15 15 1.9.    Hyperbolic functions................. 30 30
dictionnaire 16 16 1.10.    Orthogonal polynomials............... 3g 38
conjugaison 17 17 1.11.    Gamma function (including incomplete    gamma  
photos 18 18 function) and related    functions; Legendre function ....    39 39
VIDEOS 19 19 1.12.    Bessel functions of argument kx........... 43 43
sciences 20 20 1.13.    Bessel functions of other arguments.......... 51 51
TECHNIQUES 21 21 1.14.    Other higher transcendental functions......... 60 60
electromagnetisme 22 22 CHAPTER II  
physique 23 23 FOURIER SINE TRANSFORMS  
thermodynamique 24 24 2.1.    General formulas.................. 63 63
electrotechnique 25 25 2.2.    Algebraic functions................. 54 64
Wantzel 26 26 2.3.    Powers with arbitrary index............. 53 68
Extraction_de_racines_carrées 27 27 2.4.    Exponential functions................ 72 72
Cafe-10-12-10.pdf 28 28 2.5.    Logarithmic functions................ 76 76
WANTZEL 29 29 2.6.    Trigonometric functions of argument kx........ 78 78
quantum-theory-wanclik 30 30 2.7.    Trigonometric functions of other arguments...... 82 82
equation-du-second-degre 31 31 2.8.    Inverse trigonometric functions........... 87 87
Équation_cubique 32 32 2.9.    Hyperbolic functions............... 88 88
troisieme-degre 33 33 2.10.    Orthogonal polynomials.............. 94 94
Cubic_equation 34 34 2.LI. Gamma functions (including incomplete gamma function) 96
Équation_du_troisième_degré 35 35 and related functions; Legendre function....... 96  
equation-troisieme-degre 36 36 2.12.    Bessel functions of argument kx........... 99 99
equation_troisieme_degre.pdf 37 37 2.13.    Bessel functions of other arguments......... 108 108
Eqa3dex. 38 38 2.14.    Other higher transcendental functions........ 115 115
reimann-une-enigme- 39 39 CHAPTER III  
sanscrit 40 40 EXPONENTIAL FOURIER TRANSFORMS  
equa31 41 41 3.1.    General formulas................. 117 117
pdf 42 42 3.2.    Elementary functions................ 118 118
FOURIER-transfoRms 43 43 3.3.    Higher transcendental functions........... 122 122
44 44 LAPLACE TRANSFORMS    125 125
45 45 CHAPTER IV  
46 46 LAPLACE TRANSFORMS  
47 47 4.1.    General formulas................. 129 129
48 48 4.2.    Algebraic functions................ 133 133
49 49 4.3.    Powers with an arbitrary index........... 137 137
50 50 4.4.    Step-, jump-, and other sectionally rational functions .    141 141
51 51 4.5.    Exponential functions............... 143 143
52 52 4.6.    Logarithmic functions............... 148 148
53 53 4.7.    Trigonometric functions.............. 150 150
54 54 4.8.    Inverse trigonometric functions........... 160 160
55 55 4.9.    Hyperbolic functions................ 162 162
56 56 4.10.    Inverse hyperbolic functions............ 167 167
57 57 4.11.    Orthogonal polynomials............... 170 170
58 58 4.12.    Gamma function, error function, exponential integral and  
59 59 related functions................. 176 176
60 60 4.13.    Legendre functions................ 179 179
61 61 4.14.    Bessel functions of arguments kt and kt'^....... 182 182
62 62 4.15.    Bessel functions of other arguments......... 190 190
63 63 4.16.    Modified Bessel functions of arguments kt  
64 64 and kt*..................... 195 195
65 65 4.17.    Modified Bessel functions of other arguments ....    199 199
66 66 4.18.    Kelvin’s functions and related functions....... 203 203
67 67 4.19.    Functions related to Bessel functions, Struve, Lommel  
68 68 and Bessel integral functions........... 205 205
69 69 4.20.    Parabolic cylinder functions............ 210 210
70 70 4.21.    Gauss’ hypergeometric functions.......... 212 212
71 71 4.22.    Confluent hypergeometric functions......... 214 214
72 72 4.23.    Generalized hypcrgeometric series......... 217 217
73 73 4.24.    Hypergeomctric functions of several    variables ....    222 222
74 74 4.25.    Elliptic functions................. 224 224
75 75 4.26.    Miscellaneous functions.............. 225 225
76 76 CHAPTER V  
77 77 INVERSE LAPLACE TRANSFORMS  
78 78 5.1.    General formulas................. 227 227
79 79 5.2.    Rational functions................ 229 229
80 80 5.3.    Irrational algebraic functions........... 233 233
81 81 5.4.    Powers with an arbitrary index........... 238 238
82 82 5.5.    Exponential functions of arguments p and 1/p ....    241 241
83 83 5.6.    Exponential functions of other arguments...... 245 245
84 84 5.7.    Logarithmic functions............... 250 250
85 85 5.8.    Trigonometric functions.............. 253 253
86 86 5.9.    Hyperbolic functions............... 255 255
87 87 5.10.    Orthogonal polynomials.............. 259 259
88 88 5.11.    Gamma function, incomplete gumma functions, zeta  
89 89 function and related functions........... 261 261
90 90 5.12.    Error function, exponential integral and related  
91 91 functions.................... 265 265
92 92 5.13.    Legendre functions................ 270 270
93 93 5.14.    Bessel functions................. 272 272
94 94 5.15.    Modified Bessel functions of arguments    kp and kp2 . .    276 276
95 95 5.16.    Modified Bessel functions of other arguments ....    279 279
96 96 5.17.    Functions related to Bessel functions........ 286 286
97 97 5. L8.    Parabolic cylinder functions............ 289 289
98 98 5.19.    Gauss’hypcrgeometric function.......... 291 291
99 99 5.20.    Confluent hypergeomctric functions......... 293 293
100 100 5.21.    Generalized hypcrgeometric functions........ 297 297
101 101 5.22.    Elliptic functions and theta functions........ 299 299
102 102 MELLIN TRANSFORMS    303 303
103 103 CHAPTER VI  
104 104 MELLIN TRANSFORMS  
105 105 6.1.    General formulas.................. 307 307
106 106 6.2.    Algebraic functions and powers with arbitrary    index    .    .    308 308
107 107 6.3.    Exponential functions................ 312 312
108 108 6.4.    Logarithmic functions................ 314 314
109 109 6.5.    Trigonometric and inverse trigonometric functions .    .    .    317 317
110 110 6.6.    Hyperbolic and inverse hyperbolic functions...... 322 322
111 111 6.7.    Orthogonal polynomials, gamma functions, Legendre  
112 112 functions and related functions............ 324 324
113 113 6.8.    Bessel functions and related functions........ 326 326
114 114 6.9.    Other higher transcendental functions......... 336 336
115 115 CHAPTER VII  
116 116 INVERSE MELLIN TRANSFORMS  
117 117 7.1.    Algebraic functions and powers with arbitrary    index.    .    .    341 341
118 118 7.2.    Other elementary functions.............. 344 344
119 119 7.3.    Gamma function and related functions; Kicmann’s zeta  
120 120 function...................... 347 347
121 121 7.4.    Bessel functions.................. 356 356
122 122 7.5.    Other higher transcendental functions......... 362 362
123 123 APPENDIX  
124 124 Notations and definitions of higher transcendental  
125 125 functions..................... 367 367
126 126 INDEX OF NOTATIONS................... 389 389
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402